Arkansas STEMI Systems of Care
Best Practice and Operations Manual
for
EMS, Non-PCI and PCI Hospitals

Arkansas STEMI Advisory Council

Version 1.0 July 2018
Table of Contents

Introduction..1-2
Arkansas Hospital Maps..3-4
A Changing Landscape for Reperfusion Times and Processes...5
STEMI Criteria..6
STEMI Systems of Care..7-8
EMS: Dispatch...9
EMS: Initial Contact- Basic, Intermediate, Paramedic...10-14
EMS: Inter-facility Transfer- Basic, Intermediate, Paramedic...15
EMS: Diversion from Non-PCI Hospital to PCI Hospital..16
EMS: Air Medical Transfer...17-20
NPCI-Referral Hospital...21-24
PCI-Receiving Hospital...25-30
Cardiogenic Shock..31
ECG Acquisition..32
Systems Data Collection and Goals...33-34
Inappropriate Activation Form..35-37
Example of STEMI Tracking Sheet..38-39
STEMI Coordinator Job Description...40-42
Glossary of Terms...43-46
References...47-48
INTRODUCTION

Across the United States, hospitals and emergency medical systems are organizing coordinated regional plans for ST-Elevation Myocardial Infarction (STEMI) diagnosis and rapid reperfusion. Arkansas volunteer stakeholders from EMS agencies, Inter-facility Transport Agencies, NPCI-Referral and PCI-Receiving hospitals, and other coalitions, such as, STEMI Advisory Council (STAC), American Heart Association (AHA), Arkansas Hospital Association (AHA), and the Heart Disease and Stroke Prevention Coalition are collaborating to decrease death and disability from ST-elevation myocardial infarction.

Project Overview

KEY PROCESS OBJECTIVES:

1. Markedly accelerate the development of regional systems to diagnose, treat, and deliver follow-up care for patients with acute myocardial infarction. Regional systems will be composed of all hospitals and emergency medical service providers within a geographic region following agreed-upon diagnostic and treatment protocols and supported by ongoing data collection and feedback. Building upon established national guidelines and building a local consensus, these networks will help facilitate effective delivery of emergency cardiac care in a timely, coordinated and consistent manner.

2. Bring together leading health care providers and institutions in a collaborative fashion facilitated by professional organizations, national experts in regional system organization, key local thought leaders in cardiology and emergency medicine, and leading emergency cardiac care businesses.

3. Identify and establish regional leadership in emergency cardiac care that includes key physicians and administrators in hospitals, emergency medicine, and cardiology.

SPECIFIC OBJECTIVES:

1. Increase the rate and speed of reperfusion, specifically from the time the STEMI patient accesses the health care system, be it via EMS or self-presentation to the emergency department, to reperfusion (preference for primary PCI; fibrinolysis when time goals for primary PCI cannot be met).

2. Establish a predetermined plan for STEMI identification, acute treatment, and timely disposition to the most appropriate hospital, regardless of where the STEMI patient enters the system.
Project Overview-continued

3. **Empower EMS and NPCI-Referral hospital emergency departments to determine the best reperfusion plan and most appropriate destination protocol**, using pre-hospital ECG and telephone support by PCI hospitals.

4. **Improve pre-hospital and hospital care of high-risk STEMI patients** according to guideline-directed, evidence-based medicine.

5. **Perform a baseline assessment** to create an ideal plan for system improvements, and implement these improvements through ongoing data assessment and feedback on a quarterly basis.
Hospitals listed are 24/7 receiving centers for percutaneous coronary intervention (PCI) emergency cases. Facilities are listed on the next page.

Arkansas PCI Hospitals

MAP KEY

- Northwest
- Arkansas Valley
- North Central
- Central Arkansas
- Southwest

In-state PCI Hospitals
Out-of-state PCI Hospitals

24/7 PCI Receiving Centers

<table>
<thead>
<tr>
<th>MAP #</th>
<th>HOSPITAL NAME</th>
<th>CITY</th>
<th>COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Arkansas Heart Hospital</td>
<td>Little Rock</td>
<td>Pulaski</td>
</tr>
<tr>
<td>2</td>
<td>Baptist Health Medical Center – Conway</td>
<td>Conway</td>
<td>Faulkner</td>
</tr>
<tr>
<td>3</td>
<td>Baptist Health Medical Center – Little Rock</td>
<td>Little Rock</td>
<td>Pulaski</td>
</tr>
<tr>
<td>4</td>
<td>Baptist Health Medical Center – North Little Rock</td>
<td>North Little Rock</td>
<td>Pulaski</td>
</tr>
<tr>
<td>5</td>
<td>Beaver Regional Medical Center</td>
<td>Mountain Home</td>
<td>Baxter</td>
</tr>
<tr>
<td>6</td>
<td>CHI St. Vincent - Hot Springs</td>
<td>Hot Springs</td>
<td>Garland</td>
</tr>
<tr>
<td>7</td>
<td>CHI St. Vincent Infirmary</td>
<td>Little Rock</td>
<td>Pulaski</td>
</tr>
<tr>
<td>8</td>
<td>CHI St. Vincent - North Sherwood</td>
<td>Sherwood</td>
<td>Pulaski</td>
</tr>
<tr>
<td>9</td>
<td>Central Arkansas Veterans Healthcare System – John L. McCollister Veterans Hospital</td>
<td>Little Rock</td>
<td>Pulaski</td>
</tr>
<tr>
<td>10</td>
<td>Conway Regional Medical Center</td>
<td>Conway</td>
<td>Faulkner</td>
</tr>
<tr>
<td>11</td>
<td>Jefferson Regional Medical Center</td>
<td>Pine Bluff</td>
<td>Jefferson</td>
</tr>
<tr>
<td>12</td>
<td>Medical Center of South Arkansas</td>
<td>El Dorado</td>
<td>Union</td>
</tr>
<tr>
<td>13</td>
<td>Mercy Hospital Fort Smith</td>
<td>Fort Smith</td>
<td>Sebastian</td>
</tr>
<tr>
<td>14</td>
<td>Mercy Hospital Northwest Arkansas</td>
<td>Rogers</td>
<td>Benton</td>
</tr>
<tr>
<td>15</td>
<td>National Park Medical Center</td>
<td>Hot Springs</td>
<td>Garland</td>
</tr>
<tr>
<td>16</td>
<td>NWA Baptist Memorial Hospital</td>
<td>Jonesboro</td>
<td>Craighead</td>
</tr>
<tr>
<td>17</td>
<td>Northwest Medical Center – Bentonville</td>
<td>Bentonville</td>
<td>Benton</td>
</tr>
<tr>
<td>18</td>
<td>Northwest Medical Center – Springdale</td>
<td>Springdale</td>
<td>Washington/ Benton</td>
</tr>
<tr>
<td>19</td>
<td>St. Bernard Medical Center</td>
<td>Jonesboro</td>
<td>Craighead</td>
</tr>
<tr>
<td>20</td>
<td>Saline Memorial Hospital</td>
<td>Benton</td>
<td>Saline</td>
</tr>
<tr>
<td>21</td>
<td>Sparks Regional Medical Center</td>
<td>Fort Smith</td>
<td>Sebastian</td>
</tr>
<tr>
<td>22</td>
<td>Washington Regional Medical Center</td>
<td>Fayetteville</td>
<td>Washington</td>
</tr>
<tr>
<td>23</td>
<td>Unity Health – White County Medical Center</td>
<td>Starr City</td>
<td>White</td>
</tr>
<tr>
<td>24</td>
<td>White River Medical Center</td>
<td>Blytheville</td>
<td>Independence</td>
</tr>
<tr>
<td>25</td>
<td>UAMS Medical Center</td>
<td>Little Rock</td>
<td>Pulaski</td>
</tr>
<tr>
<td>26</td>
<td>Methodist University Hospital</td>
<td>Memphis, TN</td>
<td>Shelby</td>
</tr>
<tr>
<td>27</td>
<td>CHRISTUS St. Michael Heath System</td>
<td>Texarkana, TX</td>
<td>Bowie</td>
</tr>
<tr>
<td>28</td>
<td>Washburn Regional Medical Center</td>
<td>Texarkana, TX</td>
<td>Bowie</td>
</tr>
<tr>
<td>29</td>
<td>Delta Regional Medical Center</td>
<td>Greenville, MS</td>
<td>Washington</td>
</tr>
</tbody>
</table>
Arkansas Non-PCI Hospitals

Hospitals listed are non-percutaneous coronary intervention (Non-PCI) hospital referral centers. Facilities are listed on the next page.

MAP KEY

- [] Northwest
- [] Arkansas Valley
- [] Southwest
- [] North Central
- [] Central
- [] Northeast
- [] Arkansas

Non-PCI Hospitals

Arkansas Non-PCI Hospitals

<table>
<thead>
<tr>
<th>MAP #</th>
<th>HOSPITAL NAME</th>
<th>CITY</th>
<th>COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Arkansas Medical Center</td>
<td>Paragould</td>
<td>Greene</td>
</tr>
<tr>
<td>2</td>
<td>Ashley County Medical Center</td>
<td>De Queen</td>
<td>Ashley</td>
</tr>
<tr>
<td>3</td>
<td>Baptist Health Medical Center –Arkadelphia</td>
<td>Arkadelphia</td>
<td>Clark</td>
</tr>
<tr>
<td>4</td>
<td>Baptist Health Medical Center –Heber Springs</td>
<td>Heber Springs</td>
<td>Cleburne</td>
</tr>
<tr>
<td>5</td>
<td>Baptist Health Medical Center – Hot Springs County</td>
<td>Malvern</td>
<td>Hot Springs</td>
</tr>
<tr>
<td>6</td>
<td>Baptist Health Medical Center – Starlight</td>
<td>Stuttgart</td>
<td>Arkansas</td>
</tr>
<tr>
<td>7</td>
<td>Baxter County Medical Center</td>
<td>Warren</td>
<td>Bradley</td>
</tr>
<tr>
<td>8</td>
<td>Chambers Memorial Hospital</td>
<td>Mountain View</td>
<td>Yell</td>
</tr>
<tr>
<td>9</td>
<td>CHI St. Vincent Hospital Conway</td>
<td>Mena</td>
<td>Conway</td>
</tr>
<tr>
<td>10</td>
<td>Christ Medical Center</td>
<td>Lake Village</td>
<td>Chicot</td>
</tr>
<tr>
<td>11</td>
<td>Crossroads Community Hospital</td>
<td>Wynne</td>
<td>Cross</td>
</tr>
<tr>
<td>12</td>
<td>Dallas County Medical Center</td>
<td>Scranton</td>
<td>Dallas</td>
</tr>
<tr>
<td>13</td>
<td>Delta Medical Center</td>
<td>Forrest City</td>
<td>Desha</td>
</tr>
<tr>
<td>14</td>
<td>Geer Mason Medical Center</td>
<td>Desha</td>
<td>Desha</td>
</tr>
<tr>
<td>15</td>
<td>DeWitt Hospital and Nursing Home</td>
<td>DeWitt</td>
<td>Arkansas</td>
</tr>
<tr>
<td>16</td>
<td>Drew Memorial Hospital</td>
<td>Monticello</td>
<td>Drew</td>
</tr>
<tr>
<td>17</td>
<td>Eureka Springs Hospital</td>
<td>Eureka Springs</td>
<td>Carroll</td>
</tr>
<tr>
<td>18</td>
<td>Fine Springs Medical Center</td>
<td>Pocahontas</td>
<td>Randolph</td>
</tr>
<tr>
<td>19</td>
<td>Forrest City Medical Center</td>
<td>Jonesboro</td>
<td>St. Louis</td>
</tr>
<tr>
<td>20</td>
<td>Fulton County Hospital</td>
<td>Salem</td>
<td>Fulton</td>
</tr>
<tr>
<td>21</td>
<td>Great River Medical Center</td>
<td>Stilwell</td>
<td>Mississippi</td>
</tr>
<tr>
<td>22</td>
<td>Helena Regional Medical Center</td>
<td>Helena</td>
<td>Phillips</td>
</tr>
<tr>
<td>23</td>
<td>Howard Memorial Hospital</td>
<td>Nashville</td>
<td>Howard</td>
</tr>
<tr>
<td>24</td>
<td>Izard County Medical Center</td>
<td>Mountain Home</td>
<td>Izard</td>
</tr>
<tr>
<td>25</td>
<td>Johnson Medical Center</td>
<td>Clarksville</td>
<td>Johnson</td>
</tr>
<tr>
<td>26</td>
<td>Lawrence Memorial Hospital</td>
<td>Walnut Ridge</td>
<td>Lawrence</td>
</tr>
<tr>
<td>27</td>
<td>Little River Memorial Hospital</td>
<td>Ashdown</td>
<td>Little River</td>
</tr>
<tr>
<td>28</td>
<td>Magnolia Regional Medical Center</td>
<td>Magnolia</td>
<td>Columbia</td>
</tr>
<tr>
<td>29</td>
<td>McGehee Hospital</td>
<td>McGehee</td>
<td>Desha</td>
</tr>
<tr>
<td>30</td>
<td>Meno Regional Health System</td>
<td>Meno</td>
<td>Polk</td>
</tr>
<tr>
<td>31</td>
<td>Mercy Hospital Berryville</td>
<td>Berryville</td>
<td>Carroll</td>
</tr>
<tr>
<td>32</td>
<td>Mercy Hospital Booneville</td>
<td>Booneville</td>
<td>Logan</td>
</tr>
<tr>
<td>33</td>
<td>Mercy Hospital Texarkana</td>
<td>Texarkana</td>
<td>Franklin</td>
</tr>
<tr>
<td>34</td>
<td>Mercy Hospital Paris</td>
<td>Paris</td>
<td>Logan</td>
</tr>
<tr>
<td>35</td>
<td>Mercy Hospital Roland</td>
<td>Roland</td>
<td>Washington</td>
</tr>
<tr>
<td>36</td>
<td>North Arkansas Regional Medical Center</td>
<td>Harrison</td>
<td>Boone</td>
</tr>
<tr>
<td>37</td>
<td>North Metro Medical Center</td>
<td>Jacksonville</td>
<td>Pulaski</td>
</tr>
<tr>
<td>38</td>
<td>Ozarka County Medical Center</td>
<td>Camdenton</td>
<td>Ozark</td>
</tr>
<tr>
<td>39</td>
<td>Ozark Medical Center</td>
<td>Van Buren</td>
<td>Van Buren</td>
</tr>
<tr>
<td>40</td>
<td>Ozarka Community Hospital of Mountain Home</td>
<td>Mountain Home</td>
<td>Boone</td>
</tr>
<tr>
<td>41</td>
<td>Piggott Community Hospital</td>
<td>Piggott</td>
<td>Clay</td>
</tr>
<tr>
<td>42</td>
<td>Regina Hospital – Springdale</td>
<td>Springdale</td>
<td>Washington</td>
</tr>
<tr>
<td>43</td>
<td>River Valley Medical Center</td>
<td>Ozark</td>
<td>Whichita</td>
</tr>
<tr>
<td>44</td>
<td>Silver Springs Regional Hospital</td>
<td>Siloam Springs</td>
<td>Benton</td>
</tr>
<tr>
<td>45</td>
<td>South Minnnesota County Regional Medical Center</td>
<td>Osceola</td>
<td>Mississippi</td>
</tr>
<tr>
<td>46</td>
<td>Spencer Medical Center – Van Buren</td>
<td>Van Buren</td>
<td>Crawford</td>
</tr>
<tr>
<td>47</td>
<td>St. Mary’s Regional Medical Center</td>
<td>Russellville</td>
<td>Pope</td>
</tr>
<tr>
<td>48</td>
<td>Stone County Medical Center</td>
<td>Mountain View</td>
<td>Stone</td>
</tr>
<tr>
<td>49</td>
<td>Unity Health – Manila Medical Center</td>
<td>Newport</td>
<td>Jackson</td>
</tr>
<tr>
<td>50</td>
<td>Veterans Health Care System of the Ozarks</td>
<td>Fayetteville</td>
<td>Washington</td>
</tr>
<tr>
<td>51</td>
<td>Walley Regional Medical Center</td>
<td>Hope</td>
<td>Hemphill</td>
</tr>
<tr>
<td>52</td>
<td>Wilcox Medical Center</td>
<td>Cherokee Village</td>
<td>Sharp</td>
</tr>
</tbody>
</table>
A Changing Landscape for Reperfusion Times and Processes: Angiography and Interventions Guidelines for Percutaneous Coronary Intervention

According to the 2015 ACC/AHA STEMI guidelines, STEMI patients presenting to NPCI-Referral hospitals should proceed with inter-hospital transfer to PCI-Receiving hospitals if the First Medical Contact to Balloon time is expected to be ≤ 120 minutes. STEMI patients presenting directly to a PCI-Receiving hospital, the guidelines call for reperfusion within 90 minutes of first medical contact. These guidelines reflect a collective recognition that timely primary PCI is the preferred reperfusion strategy for STEMI. This manual aims to provide specific strategic and tactical guidance on how to design and implement successful regional systems, particularly in the context of the new guidelines.
ST Elevation-Myocardial Infarction (STEMI) is diagnosed by the presence of both:

1. ECG criteria of 1 mm ST-elevation in 2 or more contiguous leads.

2. Cardiac symptoms are greater than 15 minutes and less than 12 hours.
BASIC RECOMMENDATIONS

Each system should have the following:

• A recognized STEMI coordinator, physician champion and EMS Medical Director.

• An administration that is committed to the facility’s reperfusion strategy of first choice primary PCI or strategies other than primary PCI for optimal STEMI care, as well as, providing the necessary resources to establish a successful system of care. This commitment should be demonstrated by a written document signed by facility leadership.

• Monthly PCI Receiving hospital Chest Pain Committee meetings consisting of an established multidisciplinary STEMI team composed of the following representatives: Administration, Physician Champions, Cardiology, ED Physician Leads, Quality Assurance staff, Cardiac Cath Lab Nurses, ED Nurses, Clinical Nurse Educators, ICU Nurses, Laboratory, NPCI and EMS medical staff involved in the care of acute myocardial infarctions.

• Conduct monthly team meetings to review and revise the system. Use “improvement science” to increase the quality of care (i.e. process mapping, team organization, multidisciplinary teamwork, cause analysis, report cards, measures of dispersion, continuous quality improvement, and data collection, measurement, and feedback). Operational issues should be reviewed, problems identified and solutions implemented.

• Appoint a PCI STEMI Coordinator to provide STEMI Feedback Communication Forms within 48 hours of primary PCIs outlining performance measures located on pages 33-34 and including the following: catheterization results, false and missed STEMI activations, deaths in transfer and systematic delays. These should be shared with the hospital’s multidisciplinary team.

• Participate in a regional or national myocardial infarction registry.
Each STEMI System should include a process for pre-hospital identification and activation, destination protocols to PCI center and transfer for patients who arrive at NPCI centers who are primary PCI candidates and/or are fibrinolytic ineligible and/or in cardiogenic shock.

Collaborate and develop a flowchart of the process that demonstrates decisions regarding mode of transport based on a reperfusion strategy, geography and distance and should include a preferred and backup transport modality.

Share a fibrinolytic protocol according to the ACC/AHA and local guidelines.

When possible, minimize or avoid continuous IV infusions such as nitroglycerin or heparin. Bolus dosing is more simple and faster.

All clocks should be synchronized in all areas that care for the ACS patient is performed, including ECG machine(s), ED, CCL, NPCI-Referral hospitals and EMS. Use COMPUTER times only when documenting. DO NOT go by the clocks on the wall or your watch.

Collaborate mock STEMI drills to PCI-Receiving hospital.

Provide ongoing training and assessment of the system.

PCI-Receiving hospitals should establishes a dedicated fax machine for receiving medical records from NPCI-Referral hospitals.

PCI-Receiving hospitals should collaborate with EMS and NPCI-Referral hospitals to receive 12-lead ECG transmissions 24 hours per day/7 days a week.

PCI-Receiving hospitals should educate EMS on STEMI bypass protocols for both NPCI-Referral and PCI-Receiving capable hospitals.

Encourage prompt data feedback immediately after procedures, including a call by the interventional cardiologist to the referring ED physician and EMT/Paramedic.

Demonstrate a commitment to improve STEMI care for all hospitals regardless of affiliation.
BASIC RECOMMENDATIONS

• Establish a STEMI Plan: Coordinate a regional plan focused on providing timely EMS response and transfer in collaboration with all hospitals and emergency medical systems in the region. The plan should require early notification from the field to receiving hospitals for all STEMI patients, including communication with a physician capable of activating a reperfusion plan. EMS should consider transport to the most appropriate facility for optimum patient care for their current condition.

• Train 911 operators to recognize acute cardiac symptoms and dispatch appropriate EMS resources with the ability to perform 12-Lead ECG.

• Instruct patient to take Aspirin per protocol.

• Target total scene time ≤ 10 minutes from EMS arrival to departure (including ECG acquisition).

• Empower EMS units identifying STEMI patients to bypass the closest NPCI-Referral hospital and go directly to a primary PCI capable hospital, if:

 1. First medical contact to device deployment can be achieved within 90 minutes

 AND/OR

 2. Reperfusion checklist shows contraindication to fibrinolysis
BASIC RECOMMENDATIONS

• Know your geographical area for transport.

• Empower EMS units identifying STEMI patients to bypass the closest non-PCI hospital and go directly to a primary PCI capable hospital, if:

 1. First medical contact to device deployment can be achieved within 90 minutes
 AND/OR
 2. Reperfusion checklist shows contraindication to fibrinolysis (See page 14, Appendix B)

• Document symptom onset date, time and description.

• Goal for scene time of ≤ 10 minutes or less.

• Keep patient on ambulance stretcher for STEMI evaluation in hospitals that routinely transfer by the same ambulance.

12-LEAD ECG

• PCI-Receiving hospitals should collaborate with EMS to receive 12-lead ECG transmission 24 hours per day/ 7 days a week. EMS should transmit 12-lead ECGs if technically feasible, reliable and if a system exists for immediate ECG interpretation by a physician. This is helpful for ECGs that have an uncertain EMS interpretation.

• STEMI alert is activated from the field as a direct result of EMS personnel’s ability to read and transmit a 12-lead ECG.

• Obtain ECG on all patients with ACS signs and symptoms. See ECG Acquisition, page 32.

• Obtain prehospital ECG. First Medical Contact (FMC) to ECG ≤ 5 minutes.

• First positive ECG to STEMI alert ≤ 5 minutes.
MEDICATIONS/ TREATMENTS

Aspirin
• Administer non-enteric coated Aspirin 162mg to 325mg PO, chewed, to patients with no history or aspirin allergy and without signs of active or recent gastrointestinal bleeding.

Oxygen
• Maintain oxygen saturation > 90% with the lowest concentration of supplemental oxygen possible.

Nitroglycerin- (After 12-lead ECG is obtained)
• Administer 3 nitroglycerin (tablets or spray) at intervals of 3 to 5 minutes, if the patient is still symptomatic. Monitor for hypotension.
• Nitrates in all forms are contraindicated in patients:
 ➢ SBP < 90 mmHg
 ➢ Extreme caution advised in patients with known inferior wall STEMI and suspected right ventricular (RV) involvement. These patients require adequate RV preload. A right-sided ECG should be performed to evaluate the RV infarction.
 ➢ Patients taking phosphodiesterase-5 (PDE-5), Sildenafil (Viagra, Revatio) or Vardenafil (Levitra) in past 24 hours or Tadalafil (Cialis) in the past 36 hours due to potential severe hypotension.

Narcotics
• Morphine or Fentanyl IV PRN for chest pain unrelieved by NTG.

IV Fluids
• Per protocol.
• Two IV’s if possible, with left arm preference. Do NOT delay transport for a second IV.
Vital Signs
- Monitor for hypotension and respiratory depression after administration of NTG, narcotics and anti-hypertensive agent.

REPERFUSION
- Review the reperfusion checklist for potential contraindications to fibrinolysis in situations where a patient may be taken to a NPCI-Referral hospital that uses fibrinolytic therapy. See EMS Point of Entry, page 13-14.
- If lytics are administered at NPCI-Referral hospital, perform 12-lead ECG during transport to assess for reperfusion indicators, i.e. no ST-elevation. If ST remains elevated, notify PCI-Receiving hospital immediately.
- If the patient is fibrinolytic ineligible, EMS should divert to a primary PCI-capable receiving hospital.

ARRIVAL and DEPARTURE FROM HOSPITAL
- For patient transport from NPCI-Referral hospital to PCI-Receiving hospital, minimize “Load and Go” to ≤ 10 minutes.
- Make EMS run sheets immediately available to PCI-Receiving hospital before departure. Suggestions for making EMS data available:
 - Allow adequate time for EMS crews to complete run sheets before hospital departure
 - Provide paper or electronic format that is readily accessible to hospital personnel
 - Give hospital Quality staff access to electronic EMS records
 - Link EMS data to hospital data in electronic format
 - Send EMS records to hospital Quality staff within 24 hours
- Provide copies of all ECG’s that include acquisition time at the PCI-Receiving hospital.
EMS: STEMI POINT OF ENTRY

ACC/AHA STEMI Criteria
- Signs / Symptoms of Acute Coronary Syndrome (ACS) AND
- ST segment elevation of 1mm or more in two contiguous leads
- If ST elevation inconclusive, isolated to V1-V2, then consult with cardiologist.

GOALS
- First Medical Contact to ECG ≤ 5 mins
- First ECG → Activate Code STEMI & Transmit ECG ≤ 5 mins
- Scena time ≤ 10 mins
- First Medical Contact to Balloon ≤ 90 mins
- Transfer with lytics ≤ 120 mins

EMS Presentation
- 911 call with chief complaint of signs & symptoms of ACS
- EMS on scene. First Medical Contact to ECG ≤ 5 minutes. Minimize scene time ≤ 10 minutes.

- **ECG**
 - (+) for STEMI
 - No
 - Treat Accordingly

- **Yes**
 - Estimated time from FMC to Balloon ≤ 90 mins
 - See Appendix B on the back of this page

- **Yes**
 - Transport to nearest PCI center

- **No**
 - Are there contraindications to Fibrinolytics?
 - Yes
 - Notify & transport patient to NICI for lytics
 - Announce ETA
 - Leave patient on EMS stretcher for lytic treatment
 - No

In ≤ 5 minutes of (+) ECG interpretation:
- Activate “Code STEMI” (nearest PCI center)
- Transmit ECG
- Announce ETA

Continue to next page for Appendix A and B.
Appendix A

Patient Priorities Prior to or During Transport

DO NOT DELAY TRANSPORT
- Oxygen- titrate to maintain O2 Sat between 94-99%
- Establish saline lock - large bore, JAC preferred, avoid hand
- Chewable Aspirin PO: Adult 325mg; Baby 32.4mg
- Heparin 60 units/kg IV, max dose is 4,000 units (if available)
- Cardiac Monitor – attach defib pads
- Obtain vital signs and pain scale

Patient Care when time allows

DO NOT DELAY TRANSPORT
- Transmit ECG to nearest PCI Receiving center
- Establish 2nd saline lock – large bore, (avoid hand)
- Nitroglycerin 0.4mg SL every 5 min (max 3 doses) until pain subsides & SBP remains > 100 (Caution with inferior MI)
- Morphine or Fentanyl IV PRN for chest pain unrelieved by NTG
- Consider antihypertensive agent for BP > 160/90

*Appendix B

Fibrinolytic Checklist:
Must be completed prior to administration. If any below are "yes", fibrinolysis may be contraindicated. Contact receiving physician for guidance.

Absolute Contraindications
- Yes/No: Any prior intracranial hemorrhage
- Yes/No: Known structural cerebral vascular lesion (ie. arteriovenous malformation)
- Yes/No: Allergy to thrombolytics
- Yes/No: Ischemic stroke < 3 months
- Yes/No: Known malignant intracranial neoplasm
- Yes/No: Suspected aortic dissection
- Yes/No: Active bleeding or bleeding diathesis (excluding menses)
- Yes/No: Significant closed-head or facial trauma < 3 months
- Yes/No: Severe uncontrolled hypertension (unresponsive to emergency therapy)
- Yes/No: Intracranial or intraspinal surgery within 2 months
- Yes/No: For streptokinase, prior treatment within the previous 6 months

Relative Contraindications
- Yes/No: History of chronic, severe, poorly controlled hypertension
- Yes/No: Significant HTN on presentation (SBP > 180mmHg or DBP > 110mmHg)
- Yes/No: History of prior ischemic stroke > 3 months
- Yes/No: Dementia
- Yes/No: Known intracranial pathology not covered in absolute contraindications
- Yes/No: Traumatic or prolonged CPR > 10 minutes
- Yes/No: Recent internal bleeding (>4 weeks)
- Yes/No: Major surgery ≤ 3 weeks
- Yes/No: Noncompressible vascular punctures
- Yes/No: Pregnancy
- Yes/No: Active peptic ulcer
- Yes/No: Oral anticoagulant therapy

* Viewed as advisory for clinical decision making and may not be all-inclusive or definitive.
BASIC RECOMMENDATIONS

• Hospitals should assign a priority to STEMI patient transfers and process these transfers as 911 calls or trauma patients to meet the goal of 120 minutes.

• Use a local, paramedic-staffed EMS ground ambulance to transport hemodynamically stable STEMI patients when:
 ➢ Ambulance is available
 ➢ Drive time to destination hospital is less than 45 minutes

• Patients should remain on the EMS stretcher with EMS in attendance until a transfer decision is made.

• Transport directly to CCL when the laboratory is staffed and available.

• Transfer protocol should focus on rapid transport to CCL, rather than on pain relief with medications.

• When transporting a patient treated with fibrinolysis who has continued chest pain and/or < 50% ST resolution after 60 to 90 minutes from the initiation of fibrinolysis, notify the receiving hospital about the potential need for rescue PCI.

• Fax hospital records to the PCI-Receiving hospital dedicated fax machine so as not to delay patient pickup.

• Complete the EMTALA/COBRA/medical necessity of transfer form as soon as the decision to transfer is made.

• Advanced life support units serving a hospital should be willing to transfer the patient to any available PCI-Receiving hospital in cases where another transport option is not immediately available.
• Develop diversion plans in collaboration with local EMS, medical, and hospital leadership.

• Consider EMS diversion from an NPCI-Referral hospital to a PCI-Receiving hospital in two circumstances:

 1. *Diversion for primary PCI*
 - The EMS unit can diagnose a STEMI, directly activate an interventional cardiac catheterization facility, and achieve a first medical contact to device deployment time within 90 minutes on a consistent basis.

 2. *Fibrinolytic ineligible*
 - The EMS unit can diagnose a STEMI, directly activate an interventional cardiac catheterization facility, and the patient is ineligible for fibrinolysis according to the reperfusion checklist.
BASIC RECOMMENDATIONS

- Helicopter transport may be suitable to meet the goal of First Medical Contact to Balloon of ≤ 90 minutes.

- Helicopter transport is also suitable for transporting hemodynamically unstable patients.

- For the transport of hemodynamically stable patients with travel times, local EMS ambulance staffed by paramedics is generally faster.

- Deployment of helicopter transport can be done by one of four strategies:
 1. As the primary method of inter-hospital transfer for primary PCI.
 2. As a reserve method of inter-hospital transfer when local EMS is not available.
 3. As a reserve method of inter-hospital transfer when patients are fibrinolytic ineligible, fail to reperfuse after fibrinolysis, or are hemodynamically unstable.
 4. As a primary method of transport from a STEMI medical scene or designated helicopter landing zone when ground transport is not feasible or too long.

- Hospitals and ground Emergency Medical Systems that rely on helicopter transport must have a suitable backup plan in place when helicopter transport is not available. Back up plans may include mutual aid agreements with other air medical services, ground transportation, and/or diversion to a closer hospital. If First Medical Contact to Balloon cannot be achieved within 120 minutes using alternate transportation modalities, then fibrinolysis should be considered.

- STEMI patients transported from the field to a helicopter landing zone adjacent to a hospital do not require medical evaluation by that hospital unless deemed necessary by the EMS crew.
- When helicopter transport to PCI center is the primary strategy, referring hospital should designate a landing zone as close to its emergency department as possible. Remote landing zones should generally be avoided.

- Immediately activate helicopter transport during initial communication with the receiving hospital regarding the need for reperfusion.

- For hemodynamically stable patients, critical care nurses and paramedics should minimize time on the ground with an overall goal of 10-minute package and load time.

- When the cath lab has adequate staff, patients should be transported directly to the cath lab. Stop in the PCI-Receiving hospital’s Emergency Department only if the cath lab staff has not arrived.

- When transporting a patient treated with fibrinolysis who has continued chest pain and/or less than 50% ST resolution 60-90 minutes after the initiation of fibrinolysis, notify the receiving hospital about the potential need for rescue PCI.

- Air medical services should establish mutual aid policies with neighboring services for STEMI patients that include transport of patients to the closest interventional cardiac catheterization facility upon request.

- For emergency medical services that use air medical transport, institute protocols that include criteria for air medical activation, communication, helicopter landing zones, patient packaging, alternate transportation plans, training and ongoing monitoring and feedback.

Air Medical Policies

- Air medical helicopter may be activated for STEMI requiring transport to an interventional cardiac cath lab facility in the following situations:

 - Air medical transport is part of the established EMS protocol for STEMI, and First Medical Contact to Balloon can be achieved within 120 minutes.

 - Consider air medical only if saving significant time.
Ground transport not available.

Use of local ground ambulance leaves the local community with inadequate ambulance coverage.

- EMS units will directly communicate with and activate air medical transport and PCI-Receiving hospital. If direct communication is not possible, the dispatch center will relay communication.

- Information given to Air Medical/Interventional Hospital should include:
 - EMT name and EMS unit
 - Designation of patient as “Code STEMI” protocol
 - Type and duration of cardiac symptoms and location and height of ST-segment elevation on ECG
 - Demographics including height, weight, age, gender, date of birth
 - Vital signs (blood pressure, pulse, respiratory rate)
 - Major complications such as cardiac arrest or cardiogenic shock
 - Landing zone location
 - Estimated arrival time to the landing zone
 - How to contact the on scene EMS personnel and/or the landing zone officer

- Air medical helicopters should generally transport STEMI patients to closest PCI-Receiving hospital as defined by the EMS director. This should include 24/7 capability within 30 minutes of notification, interventional cardiologist present at the start of the procedure, single call activation, accept patients regardless of bed availability, on-site cardiac surgery, and ongoing data monitoring and feedback).
• If a helicopter is not immediately available, air medical dispatch will arrange air medical transport through an alternate provider.

• If air medical transport is not feasible due to weather, a protocol-established alternate method of ground transport will be activated.

Patient Packaging

• Oxygen

• Aspirin, if not already taken by the patient.

• Two IV’s if possible, with left arm preference. Transport should NOT be delayed for a second IV.

• Remove as much clothing as possible.

• Advise air medical dispatch of the patient’s actual or estimated weight.

• Defibrillator pads (if compatible with air medical defibrillator).

• Three to five ECG electrode patches.
BASIC RECOMMENDATIONS

- Establish a predetermined, institution-specific, written protocol for early recognition and rapid reperfusion, agreed upon by all PCI hospitals and ED physicians and staff that includes:

Registration

- The first point of contact upon entrance to the ED is always a nurse. If a 24/7 triage nurse is not the first point of contact in the ED, the employees who initially greet the patient have formal training in ACS signs and symptoms, including atypical, AND receive annual updates.

- Patient registration should be completed in a similar fashion as trauma patients with the ability to fast-track critical labs, such as, Troponin, Creatinine and PT/INR, minimize ED waiting time, and provide reperfusion or rapid transfer as soon as possible.

12-Lead ECG

- Specify system for rapid ECG acquisition including having ECG equipment in the ED and specifying a location that affords prompt access and adequate patient privacy. One ECG machine is to remain in the ED at all times.

- Door-to-ECG (D2ECG) with physician interpretation ≤ 10 minutes. Perform ECG on all patients presenting to ED with ACS signs and symptoms within 10 minutes, regardless of room or nurse availability.

- Obtain ECG on all patients with ACS signs and symptoms. See ECG Acquisition, page 32.

- Positive ECG to STEMI Alert ≤ 5 minutes.
Reperfusion

- ED physicians have the authority to initiate the reperfusion strategy according to local guidelines and care pathways.
- If there is a contraindication to fibrinolysis or if an uncertain diagnosis is present, then utilization of an expedited transfer plan to PCI Receiving hospital should be initiated.
- Fibrinolytic agent stored in the emergency department and the intensive care unit.
- Ability to reconstitute and administer fibrinolytic in the emergency department.

Departure

- Obtain EMS records and forward to the PCI-Receiving hospital.
- Arrange for transport of STEMI patient.

Goals

- Door-In Door-Out (DIDO) time of ≤ 30 minutes for hospitals with a predetermined plan for transfer for primary PCI and patient’s ineligible for fibrinolysis or in cardiogenic shock.
- Door to Needle (D2N) time ≤ 30 minutes for hospitals with a predetermined plan for fibrinolysis. After fibrinolysis, NPCI-Referral hospitals should then aim to transfer patients to a PCI-Receiving hospital within 3-24 hours as part of a pharmaco-invasive approach to STEMI care.
- Aim to achieve EMS First Medical Contact (FMC) or First Facility Arrival to Balloon (D2D2B) ≤ 120 minutes, with or without lytics. While the updated ACC/AHA PCI guidelines allow for 120 minutes from First Facility Arrival to Balloon, 90 minutes should remain a systems goal.
NPCI: STEMI POINT OF ENTRY

ACC/AHA STEMI Criteria
Signs / Symptoms of Acute Coronary Syndrome (ACS) AND ST segment elevation of 1mm or more in two contiguous leads
* If ST elevation inconclusive, isolated to V1-V2, then consult with cardiologist.

Chief complaint signs and symptoms of ACS

Door to ECG completed & interpreted ≤ 10 minutes, ED physician to date, time & sign.

* ECG (+) for STEMI

GOALS
* Door to ECG ≤ 5 mins
* Door to ECG with MD interpretation ≤ 10 mins
* First (+) ECG → Activate Code STEMI, Transmit ECG, Call for transport ≤ 5 mins
* Door In Door Out ≤ 30 mins
* Door to Needle ≤ 30 mins
* Door to Door to Balloon ≤ 120 mins

In ≤ 3 minutes of (+) ECG interpretation:
- Activate "Code STEMI" (nearest PCI center)
- Transmit ECG
- Call for transport (EMS or Air Medical - consider time, geography, traffic & weather)
- Obtain ETA

Estimated time from pt arrival or EMS First Medical Contact to Balloon ≤ 120 mins

See Appendix A on the back of this page

Transport to nearest PCI center

See Appendix B on the back of this page

Are there contraindications to Fibrinolytics?

Yes

Administer Tenecteplase (TNKase).
(See Primary Drug Treatment Plan on the back of this page)

No

Yes

No

Treat Accordingly
Appendix A

Patient Priorities Prior to or During Transport

DO NOT DELAY TRANSPORT
- Oxygen - titrate to maintain O2 Sat between 94-98%
- Establish saline lock, large bore (AC preferred, avoid hand)
- Chewable Aspirin PO: Adult 325mg; Baby 32mg
- Plavix 600mg PO OR Brilinta 180mg PO (not both)
- Heparin 60 units/kg IV (Max dose is 4,000 units)
- Cardiac Monitor - attach defib pads
- Obtain vital signs and pain scale

Patient Care when time allows

DO NOT DELAY TRANSPORT
- Transmit ECG to nearest PCI Receiving center
- Establish 2nd saline lock, large bore (avoid hand)
- Labs: CKMB, Trop I/II/III, BNP, PT/INR, PTT
- Nitroglycerin 0.4mg SL every 5 min (max 3 doses) until pain subsides & SBP remains > 100 (Caution with inferior MI)
- Morphine or Fentanyl IV PRN for chest pain unrelieved by NTG
- Consider anti-hypertensive agent for SBP > 160/90

Appendix B

Fibrinolytic Checklist:

Must be completed prior to administration. If any below are “yes”, fibrinolysis may be contraindicated. Contact receiving physician for guidance.

Absolute Contraindications
- Yes → No: Any prior intracranial hemorrhage
- Yes → No: Known structural cerebral vascular lesion (ie: arteriovenous malformation)
- Yes → No: Allergy to thrombolytics
- Yes → No: Ischemic stroke < 3 months
- Yes → No: Known malignancy and intracranial neoplasm
- Yes → No: Suspected aortic dissection
- Yes → No: Active bleeding or bleeding diathesis (excluding menses)
- Yes → No: Significant closed-head or facial trauma < 3 months
- Yes → No: Severe uncontrolled hypertension (unresponsive to emergency therapy)
- Yes → No: Intracranial or intraspinal surgery within 2 months
- Yes → No: For streptokinase, prior treatment within the previous 6 months

Relative Contraindications
- Yes → No: History of chronic, severe, poorly controlled hypertension
- Yes → No: Significant HTN on presentation (SBP > 180mmHg or DBP > 110mmHg)
- Yes → No: History of prior ischemic stroke > 3 months
- Yes → No: Dementia
- Yes → No: Known intracranial pathology not covered in absolute contraindications
- Yes → No: Traumatic or prolonged CPR > 10 minutes
- Yes → No: Recent internal bleeding (< 4 weeks)
- Yes → No: Major surgery < 3 weeks
- Yes → No: Noncompressible vascular punctures
- Yes → No: Pregnancy
- Yes → No: Active peptic ulcer
- Yes → No: Oral anticoagulant therapy

* Viewed as advisory for clinical decision making and may not be all-inclusive or definitive.

Fibrinolytic Administration Guidelines

Primary Drug Treatment Plan

- Tenecteplase (TNKase) IV over 5 seconds. Do NOT exceed 50mg. If unable to give TNKase, give Retevase (Retevas)

<table>
<thead>
<tr>
<th>Patient/Weight (kg)</th>
<th>TNKase (Reconstituted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>125</td>
</tr>
<tr>
<td>60</td>
<td>150</td>
</tr>
<tr>
<td>70</td>
<td>175</td>
</tr>
<tr>
<td>80</td>
<td>195</td>
</tr>
<tr>
<td>90</td>
<td>215</td>
</tr>
</tbody>
</table>

- Clopidogrel (Plavix)

<table>
<thead>
<tr>
<th>Patient Age</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 75</td>
<td>300mg PO loading dose</td>
</tr>
<tr>
<td>> 75</td>
<td>25mg PO daily</td>
</tr>
</tbody>
</table>

- Heparin 60 units/kg IV (Max dose 4,000 units)
- Chewable Aspirin PO: Adult 325mg; Baby 32mg; if not already given
- Oxygen - titrate to maintain O2 Sat between 94-99%
- Repeat ECG 30 minutes after fibrinolytics administration, if possible

Alternative Drug Treatment Plan

- Retevase (Retevas): 10 units IV over 2 minutes x 2 at 30 minute intervals
- Heparin 60 units/kg IV (Max dose 4,000 units)
- Chewable Aspirin PO: Adult 325mg; Baby 32mg; if not already given
- Oxygen - titrate to maintain O2 Sat between 94-99%
- Repeat ECG 30 minutes after fibrinolytics administration, if possible

OR

- Alteplase (RPA): 90 min weight based infusion
- Heparin 60 units/kg IV (Max dose 4,000 units)
- Chewable Aspirin PO: Adult 325mg; Baby 32mg; if not already given
- Oxygen - titrate to maintain O2 Sat between 94-99%
- Repeat ECG 30 minutes after fibrinolytics administration, if possible

Doi: http://doi.org/10.1161/CIR.0D013e3182742cb4

4/18
BASIC RECOMMENDATIONS

• Ongoing data monitoring/quality improvement with a recommendation for participation in the NCDR ACTION Registry for statewide benchmarks.

• Designate a STEMI Coordinator to work closely with physicians, program organizers, EMS, NPCI hospitals and other key stakeholders. See STEMI Feedback section below, page 27 and STEMI Job Description, pages 39-41.

Hospital

• 24/7 primary PCI capability within 30 minutes without lapses in the call schedule.

• CCL and interventional cardiologist should arrive within 30 minutes of STEMI activation.

• No diversion policy for patients experiencing signs and symptoms of ACS. There should be a plan for triage and treatment for simultaneous presentation of STEMI patients.

• A single call for Code STEMI activations.

• Universal acceptance of STEMI transfers, regardless of bed availability. When beds are not available, employ pre-determined protocols:

 ➢ Care by the cath lab, ED, or ICU staff.

 ➢ House the patient in an emergency, procedure, or recovery room until an appropriate hospital bed is available.

• Provide 24 hours per day/7 days per week telephone ‘hotline’ of reperfusion decision for NPCI-Referring hospitals by a cardiologist on call.

• PCI establishes a dedicated fax machine for receiving medical records from the NPCI-Referral hospital.
• PCI collaborates with NPCI to receive 12-lead ECG transmission 24 hours per day/7 days a week.

• PCI addresses ongoing STEMI education for EMS, NPCI, ED, CCL, and ICU in its strategic plan.

• PCI provides a formal education process is in place to give EMS the opportunity to observe in the CCL.

• Establish a predetermined, institution-specific, written protocol for rapid primary PCI agreed upon by all cardiology and ED physicians and staff.

Registration

• The first point of contact upon entrance to the ED is always a nurse. If a 24/7 triage nurse is not the first point of contact in the ED, the employees who initially greet the patient have formal training in ACS signs and Symptoms, including atypical, AND receive annual updates.

• Patient registration should be treated the same as for trauma patients, with the ability to fast-track critical labs, such as Troponin, Creatinine, and PT/INR, minimize ED waiting time, and provide reperfusion or rapid transfer as soon as possible.

12-Lead ECG

• STEMI alert is activated from the field as a direct result of EMS personnel’s ability to read or transmit a 12-lead ECG.

• Specify system for rapid ECG acquisition including having ECG equipment in the ED and specifying a location that affords prompt access and adequate patient privacy. One ECG machine is to remain in the ED at all times.

• Obtain ECG on all patients with ACS signs and symptoms. See ECG Acquisition, page 32.

• Door-to-ECG (D2ECG) with physician interpretation ≤ 10 minutes. Perform ECG on all patients presenting to ED with ACS signs and symptoms within 10 minutes, regardless of room or nurse availability.
• Positive ECG to STEMI Alert ≤ 5 minutes.

ED/ Reperfusion

• ED physician has the authority to activate the CCL for walk-in, EMS, and NPCI STEMI patients.

• ED physician has the authority to initiate the reperfusion strategy according to local guidelines and care pathways.

• Institution-specific written STEMI care plan/protocols to achieve rapid primary PCI with Door to Balloon (D2B) ≤ 90 minutes (> 90% of the time).

• Establish medication protocols that are consistent with recommended ACC/AHA guidelines or current evidence-based published research for STEMI patients.

STEMI Feedback

• STEMI Coordinator should provide a STEMI Feedback Form to all medical personnel, including EMS and NPCI within 48 hours of primary PCI outlining performance measures located on pages 33-34 and including the following: catheterization results, false activations, deaths in transfer and systematic delays. Share with a multidisciplinary team.

Cardiac Catheterization Laboratory

• Establish a daily primary PCI operator schedule that is coordinated between all cardiologists, and involves a single rotating physician.

• CCL team and interventional cardiologist in the lab and ready within 30 minutes 24 hours/ 7 days per week basis. Employ strategies that accelerate readiness:

 ➢ Provide sleeping quarters close to the hospital.

 ➢ Designate protected parking zone for STEMI team.

 ➢ Establish cross-training and multi-disciplinary teams to expedite CCL readiness and patient care. Teams may include ICU staff, ED staff or House Supervisor.
➢ Require on-call staff to stay close enough to the hospital to ensure readiness in ≤ 30 minutes

- Establish a backup reperfusion plan to be employed when CCL(s) are down or filled with cases that cannot be delayed or moved. Backup plans may include rapid activation of an additional CCL team, diversion of the second patient to a nearby primary PCI hospital or rapid fibrinolysis (First Medical Contact to Needle ≤ 30 minutes).

- Receive EMS and referral transfers directly from EMS transport to CCL when they are staffed and ready. If the CCL is not yet available upon patient arrival to the hospital, prepare the patient in ED or ICU.

- Update history and physical on transfer to catheterization table.

- Provide prompt data feedback immediately after procedures, including a call by the interventional cardiologist to the referring ED physician or EMT/ Paramedic.

ADVANCED RECOMMENDATIONS

- PCI Arrival to Balloon (D2B) goal ≤ 60 minutes.
PCI: STEMI POINT OF ENTRY

GOALS
- Door to ECG ≤ 5 mins
- First (+) ECG → Activate Code STEMI ≤ 5 mins
- Cardiologist/Cath Lab team to arrive within 30 mins of STEMI activation
- Minimize ED time < 30 mins day time hours
- Minimize ED time < 45 mins after regular business hours
- Door to Balloon ≤ 90 mins. Aim for 60 mins.

ACC/AHA STEMI Criteria
- Signs / Symptoms of Acute Coronary Syndrome (ACS)
- ST segment elevation of 1mm or more in two contiguous leads
- If ST elevation inconclusive, isolated to V1-V2, then consult with cardiologist.

Chief complaint signs & symptoms of ACS
- Door to ECG completed & interpreted ≤ 10 minutes. ED physician to date, time & sign.

ECG (+) for STEMI
- In ≤ 5 minutes of (+) ECG interpretation:
 - Activate “Code STEMI”

Cath lab delays of ≥ 90 minutes
- Transport to Cath Lab

Are there contraindications to Fibrinolytics?
- Yes
- Administer Tenecteplase (TNFase).
 (See Primary Drug Treatment Plan on the back of this page)
- No

Continue to next page for Appendix A and B.
Appendix A

Patient Priorities Prior to or During Transport

DO NOT DELAY TRANSPORT
- Oxygen- titrate to maintain O2 Sat between 94-99%
- Establish saline lock, large bore (AC preferred, avoid hand)
- Chewable Aspirin PO: Adult 325mg; Baby 34mg
- Plavix600mg PO OR Boluva 180mg PO (not both)
- Heparin 60 units/kg IV (Max dose is 4,000 units)
- Cardiac Monitor – attach fibril pads
- Obtain vital signs and pain scale

Patient Care when time allows

DO NOT DELAY TRANSPORT
- Fast transmit ECG to nearest PO Receiving center
- Establish 2nd saline lock, large bore (avoid hand)
- Labs: CKMB, Trop I, CBC, BMP, PT/INR, PTT
- Nitroglycerin 0.4mg SL every 5 min (max 3 doses) until pain
- Substites & SBP remains > 100 (Caution with Inferior MI)
- Morphine or Fentanyl IV: 50-200mg for chest pain unrelieved by NGT

Appendix B

Fibrinolytic Administration Guidelines

Primary Drug Treatment Plan

- TPA (alteplase) 100,000 units IV over 5 seconds. Do NOT exceed 50mg. If unable to give TPA, give tPA. (Note: Dose for tPA is 1mg/kg)

Clot buster (Plavix)

<table>
<thead>
<tr>
<th>Dose</th>
<th>kg</th>
<th>mg</th>
<th>PO loading dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>132</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>330</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>450</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>650</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>750</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>950</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

- Heparin 60 units/kg IV (Max dose 4,000 units)
- Chewable Aspirin PO: Adult 325mg; Baby 34mg
- Oxygen- titrate to maintain O2 Sat between 94-99%
- Repeat ECG 30 minutes after fibrinolytic administration, if possible

Alternative Drug Treatment Plan

- Reteselase (reteplase) 10 units IV over 2 minutes x 2 at 30 minute intervals
- Heparin 60 units/kg IV (Max dose 4,000 units)
- Chewable Aspirin PO: Adult 325mg; Baby 34mg
- Oxygen- titrate to maintain O2 Sat between 94-99%
- Repeat ECG 30 minutes after fibrinolytic administration, if possible

OR

- Alteplase (tPA) 90 mg weight based infusion
- Heparin 60 units/kg IV (Max dose 4,000 units)
- Chewable Aspirin PO: Adult 325mg; Baby 34mg
- Oxygen- titrate to maintain O2 Sat between 94-99%
- Repeat ECG 30 minutes after fibrinolytic administration, if possible

* Viewed as advisory for clinical decision making and may not be all-inclusive or definitive.

Cardiogenic shock is defined as inadequate organ perfusion due to low cardiac output.

Approximately 9% of STEMI patients develop cardiogenic shock. Early recognition of shock in STEMI patients is essential, as is the implementation of advanced supportive therapies.

SHOCK FAST FACTS

- STEMI patients with shock have exceedingly high in-hospital mortality rates. One in three dies before hospital discharge.

- Early recognition and revascularization have been shown to lower mortality in a randomized controlled trial.

- Of patients with acute MI complicated by shock, one-third present in shock, while two-thirds develop shock during their hospital course. This requires both early and ongoing vigilance on the part of the entire STEMI team, from EMS to the post-PCI care team.

EARLY INDICATORS OF SHOCK in Acute MI

- Hypotension (SBP ≤ 90 mmHg)
- Narrow pulse pressure (SBP to DBP difference of < 20 mm Hg)

INDICATORS OF PROGRESSIVE SHOCK in Acute MI

- Low urine output
- Altered mental status, confusion
- Respiratory distress/hypoxia from pulmonary edema
- Cool extremities
- Rising creatinine
- Lactic and metabolic acidosis
- Characteristic pulmonary artery catheter readings
 - Low cardiac index (≤ 2.0 L/min/m²)
 - High pulmonary capillary wedge pressure (≥14-16 mm Hg)
 - High systemic vascular resistance (≥ 1200 dynes cm sec)
EKG Acquisition

Common and Atypical STEMI Symptoms

Rapid EKG Criteria

EKG within 10 minutes of ED arrival or EMS First Medical Contact!

Any patient with symptoms, regardless of age, with any of the following history:

1. Heart disease
2. Diabetes
3. High cholesterol
4. Hypertension
5. Smoking
6. Recent cocaine use

- Chest pain, discomfort, or pressure
- Dyspnea (shortness of breath)
- Arm or shoulder pain (left or right)
- Jaw or neck pain
- Upper back pain
- Epigastric pain or “heartburn”
- Diaphoresis (profuse sweating)
- Nausea or vomiting
- Light-headed or dizzy
- Syncope (fainting)
- Weakness
- Palpitations (heart skips beats)
- Tachycardia (fast heart rate)
- Symptomatic Bradycardia (slow heart rate)

Women, the elderly, and diabetic patients are more likely to present with atypical symptoms such as:

- Generalized nausea
- Weakness
- Syncope (fainting)
- Altered mental status

When in doubt, do an EKG!

Immediately show/transmit EKG to ED physician for a suspected *STEMI.

*STEMI (ST Elevated Myocardial Infarction) = Heart Attack
Systems Data Collection & Goals

EMS Ground Data Collection

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom Onset-to-911 Call</td>
<td>Monitor</td>
</tr>
<tr>
<td>911 call to first 12-lead ECG</td>
<td>Monitor</td>
</tr>
<tr>
<td>First Medical Contact-to-ECG (FMC2ECG)</td>
<td>≤ 5 mins</td>
</tr>
<tr>
<td>(+) ECG-to-Transmission/ STEMI Alert Notification</td>
<td>≤ 5 mins</td>
</tr>
<tr>
<td>EMS Scene Time (FMC to Departure)</td>
<td>≤ 10 mins</td>
</tr>
<tr>
<td>EMS NPCI Arrival to EMS NPCI Departure (“Load and Go”)</td>
<td>≤ 10 mins</td>
</tr>
<tr>
<td>Total EMS Time (Dispatch to ED Arrival) (Rural times will vary)</td>
<td>≤ 30 mins</td>
</tr>
<tr>
<td>First Medical Contact-to-Balloon (FMC2B)</td>
<td>≤ 90 mins</td>
</tr>
<tr>
<td>First Facility Arrival-to-Balloon (D2D2B)</td>
<td>≤ 120 mins</td>
</tr>
</tbody>
</table>

Exceptions

- Document any medical delays
- Track False Activations/ Missed Activations

EMS Air Medical Transport Data Collection

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) ECG-to-Air Transport Notification</td>
<td>≤ 5 mins</td>
</tr>
<tr>
<td>Air Transport Dispatch-to-Air Transport Scene Arrival</td>
<td>Monitor</td>
</tr>
<tr>
<td>Ground Time (Eye-to-Eye with the patient to ED Departure)</td>
<td>≤ 10 mins</td>
</tr>
<tr>
<td>Total Air Transport Time (Dispatch to ED Arrival)</td>
<td>Monitor</td>
</tr>
<tr>
<td>First Medical Contact-to-Balloon (FMC2B)</td>
<td>≤ 90 mins</td>
</tr>
<tr>
<td>First Facility Arrival-to-Balloon/ FMC to Balloon</td>
<td>≤ 120 mins</td>
</tr>
</tbody>
</table>

Exceptions

- Document any medical delays
- Track False Activations/ Missed Activations
Non-PCI Data Collection

<table>
<thead>
<tr>
<th>Time Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom Onset-to-ED Arrival</td>
<td>Monitor</td>
</tr>
<tr>
<td>Door-to-ECG (D2ECG)</td>
<td>≤ 5 mins</td>
</tr>
<tr>
<td>Door-to ECG with MD interpretation (ED physician to date, time and sign ECG. Use ECG stamp, if needed)</td>
<td>≤ 10 mins</td>
</tr>
<tr>
<td>(+) ECG-to-Code STEMI Activation (includes ECG transmission and call for transport - all 3 simultaneously)</td>
<td>≤ 5 mins</td>
</tr>
<tr>
<td>Door-to-Needle (D2N)</td>
<td>≤ 30 mins</td>
</tr>
<tr>
<td>Door-In Door-Out (DIDO)</td>
<td>≤ 30 mins</td>
</tr>
</tbody>
</table>

Exceptions
- Document any Medical Delays
- Track False Activations/ Missed Activations

PCI Data Collection

<table>
<thead>
<tr>
<th>Time Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track data elements included in the above charts, plus:</td>
<td></td>
</tr>
<tr>
<td>Symptom Onset-to-ED Arrival</td>
<td>Monitor</td>
</tr>
<tr>
<td>Door-to-ECG (D2ECG)- includes ED physician interpretation (ED physician to date, time and sign ECG. Use ECG stamp, if needed)</td>
<td>≤ 5 mins</td>
</tr>
<tr>
<td>Door-to-ECG with MD interpretation (ED physician to date, time and sign ECG. Use ECG stamp, if needed)</td>
<td>≤ 10 mins</td>
</tr>
<tr>
<td>(+) ECG to Code STEMI Activation</td>
<td>≤ 5 mins</td>
</tr>
<tr>
<td>Code STEMI Activation-to-Cath Lab Team Arrival Time (Based on LAST member arrival. Meet 90% of the time.)</td>
<td>≤ 30 mins</td>
</tr>
<tr>
<td>Code STEMI Activation to Interventional Cardiologist Arrival Time (Meet 90% of the time)</td>
<td>≤ 30 mins</td>
</tr>
<tr>
<td>ECG Transmission Received-to-ED MD Interpretation-to-Code STEMI Activation</td>
<td>≤ 5 mins</td>
</tr>
<tr>
<td>ED Arrival-to-ED Departure (or bypass ED)</td>
<td>≤ 30 mins</td>
</tr>
<tr>
<td>ED Departure-to-Cath Lab Arrival</td>
<td>Monitor</td>
</tr>
<tr>
<td>Cath Lab Room Arrival-to-Balloon</td>
<td></td>
</tr>
<tr>
<td>Door-to-Balloon (D2B)</td>
<td>≤ 90 mins (Aim for 60 mins)</td>
</tr>
</tbody>
</table>

Exceptions
- Document any medical delays
- Track False Activations/ Missed Activations
Inappropriate Activation Form

This description avoids language that may reflect a negative connotation among STEMI system participants, while cognizant of the need to define the most precise and widely applicable terminology available. The adoption of common definitions will provide the greatest support to STEMI system development. Systems may choose to vary the terms by which they refer to these common definitions without detracting from their usefulness. For example, “false activation” may also be used to refer to using other terms including “cath lab cancellation”, with the exception of reperfusion secondary to lytics. Additional terms that may be used in referring to a definition in the scenarios below. Common scenarios that illustrate the application of these definitions in practice are depicted below:

Scenarios

Scenario 1: Initial source of activation

A patient is initially evaluated by an EMT/Paramedic at his or her home who makes the diagnosis of STEMI and activates the catheterizations laboratory. The patient is transported to the emergency department where the emergency physician also activates the catheterization laboratory. The initial source of activation is the EMT/Paramedic.

Scenario 2: ECG interpretation method

A patient is diagnosed to have a STEMI according to multiple criteria including the EMT/Paramedic reading of the ECG and the ECG machine indicating definite STEMI. Both EMT/Paramedic and ECG machine readings should be selected for ECG interpretation method.

Scenario 3: Catheterization laboratory cancelled

An EMT/Paramedic/referral hospital notifies the receiving emergency physician that a STEMI patient was en route to the hospital. The catheterization laboratory is not activated because the emergency physician wishes to review the patient first. On arrival, the patient was not felt to meet criteria for STEMI. This scenario would not represent a cancellation of the laboratory.

Inappropriate Activation Form continued on the next 2 pages.
<table>
<thead>
<tr>
<th>Term</th>
<th>Alternative Descriptions/Terms</th>
<th>Field Choices (Choose all that apply)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial source of activation</td>
<td></td>
<td>a. Physician</td>
<td>The healthcare professional who made the initial decision to activate the catheterization laboratory. Generally, this is the first professional to evaluate the patient’s symptoms and ECG on first medical contact.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. EMT/Paramedic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Other</td>
<td></td>
</tr>
<tr>
<td>ECG interpretation method</td>
<td></td>
<td>a. EMT/Paramedic</td>
<td>The method of interpreting the ECG regarding criteria for STEMI during first medical contact. More than one option may be selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. ECG Machine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Transmission</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Other</td>
<td></td>
</tr>
<tr>
<td>Catheterization Laboratory canceled</td>
<td>False activation</td>
<td>a. Yes</td>
<td>Cancellation of catheterization laboratory after the lab has been activated and personnel are en route.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Not available</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Not applicable</td>
<td></td>
</tr>
<tr>
<td>Reason Catheterization Laboratory canceled</td>
<td></td>
<td>a. The patient did not have STE segment elevation (discordance in ECG interpretation)</td>
<td>Principal or most likely reason catheterization laboratory was canceled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. The patient did not have ischemic-type chest pain (discordancy in symptom interpretation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Resolution of chest pain and/or ST-segment elevation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Death</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. Do Not Resuscitate status</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. Unwilling to undergo catheterization</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>g. Unable to obtain consent for the procedure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h. Severe dementia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i. Combative/uncooperative patient</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>j. Active bleeding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>k. Severe co-morbid or terminal illness</td>
<td></td>
</tr>
<tr>
<td>PCI performed</td>
<td>a. Yes</td>
<td>b. No</td>
<td>c. Not available</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Reason PCI not performed</td>
<td>a. No infarct-related artery</td>
<td>b. Referred for CABG</td>
<td>c. Unable to cross lesion</td>
</tr>
<tr>
<td>Definite STEMI patients</td>
<td>a. Yes</td>
<td>b. No</td>
<td>c. Not available</td>
</tr>
<tr>
<td>Positive cardiac enzymes</td>
<td>a. Yes</td>
<td>b. No</td>
<td>c. Not available</td>
</tr>
<tr>
<td>Patient for who the catheterization laboratory should not be activated</td>
<td>a. No</td>
<td>b. Not available</td>
<td>c. Not applicable</td>
</tr>
</tbody>
</table>
Example of STEMI Tracking Sheet

NOT A PART OF THE PATIENT RECORD – FOR INTERNAL USE ONLY

Code STEMI Tracking Sheet

Date: ___________ Cardiologist: _______________
(Record all times using computer or cell phone reference)

<table>
<thead>
<tr>
<th>Time</th>
<th>Est. Patient Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMS phone report received</td>
<td>lbs. __________</td>
</tr>
<tr>
<td>EKG transmission received</td>
<td>kg. __________</td>
</tr>
<tr>
<td>Transmitted EKG interpreted by: RN MD (circle one)</td>
<td></td>
</tr>
<tr>
<td>Decision to page STEMI based on:</td>
<td></td>
</tr>
<tr>
<td>EMS phone report</td>
<td></td>
</tr>
<tr>
<td>EKG</td>
<td>(circle one)</td>
</tr>
<tr>
<td>Decision to page STEMI made by: RN MD (circle one)</td>
<td></td>
</tr>
<tr>
<td>Code STEMI page</td>
<td></td>
</tr>
<tr>
<td>Allergies:</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>STEMI Team: (page response)</td>
<td></td>
</tr>
<tr>
<td>2. Cath Team arrival in ED</td>
<td></td>
</tr>
<tr>
<td>3. Cardiologist responded via phone to page</td>
<td></td>
</tr>
<tr>
<td>4. Intervention cardiologist arrival</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
</tbody>
</table>

EMS phone report:

<table>
<thead>
<tr>
<th>EMS</th>
<th>EMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EKG rhythm:</td>
<td>B/P:</td>
</tr>
<tr>
<td>ST elevation in leads:</td>
<td>P:</td>
</tr>
<tr>
<td>Medication given by EMS:</td>
<td>Resp:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMS @ patient: ________ Goal: (<90 min)</th>
<th>ED arrival</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED arrival time: ________ Goal: (<60 min)</td>
<td>B/P:</td>
</tr>
<tr>
<td>EKG in Triage Yes: ________ (time) No P:</td>
<td>Resp:</td>
</tr>
<tr>
<td>STEMI page cancelled Yes No</td>
<td></td>
</tr>
</tbody>
</table>

First name _______________________
Last name _______________________
Date: ________________ Cardiologist: ___________ BED: _____
Procedure: ____________

<table>
<thead>
<tr>
<th>EMS Direct Admit Summary</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Summary:</td>
<td></td>
</tr>
<tr>
<td>Patient c/o symptoms:</td>
<td>___</td>
</tr>
<tr>
<td>(minutes/hours/days prior to 911)</td>
<td></td>
</tr>
<tr>
<td>Initial 911 call to EMS</td>
<td>___</td>
</tr>
<tr>
<td>EMS on scene</td>
<td>___</td>
</tr>
<tr>
<td>EMS at patient</td>
<td>___</td>
</tr>
<tr>
<td>EMS EKG performed</td>
<td>___</td>
</tr>
<tr>
<td>EMS EKG received @ triage</td>
<td>___</td>
</tr>
<tr>
<td>EMS phone report received</td>
<td>___</td>
</tr>
<tr>
<td>EMS departed scene</td>
<td>___</td>
</tr>
<tr>
<td>STEMI page placed</td>
<td>___</td>
</tr>
<tr>
<td>RN MD EMS</td>
<td></td>
</tr>
<tr>
<td>Pt arrival in triage</td>
<td>___</td>
</tr>
<tr>
<td>ED EKG</td>
<td>___</td>
</tr>
<tr>
<td>Transport to CCL from ED</td>
<td>___</td>
</tr>
<tr>
<td>Cath Lab admit</td>
<td>___</td>
</tr>
<tr>
<td>Staff cardiologist arrival</td>
<td>___</td>
</tr>
<tr>
<td>1st intervention (type)</td>
<td>___</td>
</tr>
<tr>
<td>FMC to balloon:</td>
<td>___</td>
</tr>
<tr>
<td>D2B time:</td>
<td>___</td>
</tr>
<tr>
<td>Lesion:</td>
<td>___</td>
</tr>
<tr>
<td>Page canceled: yes no</td>
<td></td>
</tr>
<tr>
<td>CCL Team:</td>
<td></td>
</tr>
<tr>
<td>Clock-in:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inter-hospital transfer patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital: _________________</td>
</tr>
<tr>
<td>City: _________________</td>
</tr>
<tr>
<td>ED Admit: ___</td>
</tr>
<tr>
<td>ED EKG: ___</td>
</tr>
<tr>
<td>Request for Transfer: ___</td>
</tr>
<tr>
<td>STEMI page: ___</td>
</tr>
<tr>
<td>Lytics: ___</td>
</tr>
<tr>
<td>ED Discharge: ___</td>
</tr>
<tr>
<td>(Your hosp) arrival: ___</td>
</tr>
<tr>
<td>CCL admit: ___</td>
</tr>
</tbody>
</table>

CCL Team: ____________ ____________ ____________ ____________
Clock-in: ________ ________ ________ ________
STEMI COORDINATOR JOB DESCRIPTION

BASIC FUNCTION
The STEMI Coordinator is responsible for the development, implementation, coordination, and maintenance of a comprehensive STEMI program that complies with national standards for quality of care for STEMI patients as dictated by the American Heart Association (AHA), American College of Cardiology (ACC), and governmental regulation for Medicare compliance.

PRIMARY ACCOUNTABILITIES

1. Adheres to the general hospital standards to promote a cooperative work environment by utilizing communication skills, interpersonal relationships and team building.
 - Follows hospital and departmental policies and procedures.
 - Assumes responsibility for staying informed and communicating changes in policies and procedures.

2. Develops, evaluates, and maintains a STEMI program that meets and exceeds the recommendations of the American College of Cardiology and American Heart Association.
 - Ensures compliance with nationally recognized standards of care.
 - Development and implementation of in-house policy and procedure for STEMI activation
 - Maintains STEMI protocols for treatment in consultation with the Department of Interventional Cardiology.
 - Develops short and long-term goals to ensure the quality of care for STEMI patients.
 - Monitors and oversees the utilization of EKG transmission system.
 - Develops alliances with other healthcare providers, acting as a resource and facilitator to enhance the STEMI market share.
 - Participates in research-based activities to ensure the hospital is represented on a local, regional, and national level as providing quality STEMI care.

3. Assumes responsibility for the ongoing program management for STEMI across the continuum from the EMS and hospital entry through discharge.
 - Participates in the care of STEMI patients when possible to maintain skills and identify barriers and needs.
 - Responds when possible to STEMI pages from the ED, in-house STEMI Rapid Response team and other EMS services.
 - Acts as a liaison and resource to EMS providers.
 - Acts as a liaison with the department of interventional cardiology to ensure physician coverage for AMI on-call responsibility.
 - Oversees and coordinates STEMI communications systems including, internet EKG transmission, physician pagers, and CCL staff on-call compliance.

4. Serves as a clinical expert and resource assisting to provide patient care services personnel and other healthcare professionals within the hospital, throughout the continuum, and in the community.
• Monitors trend variances in STEMI care and actively seeks tactics to reduce length of stay, reduce cost per patient day, and improve patient outcomes in collaboration with nurse managers and staff physicians.
• Facilitates the development, implementation, and evaluation of clinical practice guidelines and order sets.
• Assesses patients, synthesizing and analyzing data, and understanding and applying nursing and health care principles at the advanced nursing level.
• Provides expert guidance, teaching, and counseling to STEMI patients.
• Works with other members of the healthcare team including physicians, nurses, and EMS providers in providing appropriate educational opportunities.
• Develops outcome measures to monitor the quality of care, effectiveness of services provided, and adherence to protocols.
• Conducts research and utilizes research knowledge and skills.
• Serves as an educator, mentor, and consultant for nurses, physicians, and other healthcare professionals.
• Identifies and collaborates in the resolution of system issues which influence the provision of patient care.
• Participates in the development of health policies.
• Facilitates access to health care and ensure appropriate utilization of resources.

5. Promotes and develops personal and professional growth through the development of self and patient care services staff.
 • Maintains professional and clinical knowledge, acting as a resource to others.
 • Attends continuing education programs and disseminates knowledge learned to others.
 • Assesses staff educational needs, and in conjunction with the Departmental STEMI champions develops, implements, and monitors required continuing education.

6. Participates in identifying needs, planning and implementing educational programs within a specialty area for patients, families, community groups, and other designated STEMI transfer healthcare facilities.
 • Set up a transfer network for STEMI patients and utilize a pre-determined medical protocol as well as a “one-call” activation system.
 • Provides training and education to emergency department nurses and physicians in designated STEMI transfer healthcare facilities.
 • Provides for inter-facility, Emergency Medical System, and regional professional staff development, participating in case review, standardizing practice guidelines, and directing on-going education programs.
 • Acts as a liaison to the community through facilitation and coordination of heart disease programs.
 • Improves the care of heart patients through the facilitation and coordination of community education.
 • Actively participates in the Regional Mission: Lifeline STEMI System of Care Committee meetings.
 • Facilitates and monitors quality data from the STEMI registry and other databases.
• Facilitates and coordinates collection and evaluation of data in collaboration with Research RN such as chart reviews, implementation of concurrent review and reporting various STEMI program protocols for ACC/AHA quality parameters, etc.
• Facilitates and coordinates process improvement activities.
• Facilitates research activities related to the care of STEMI patients

7. Assumes a leadership role in monthly AMI/STEMI hospital committee meetings.
 • Communicates on-going status of STEMI program coordination on a monthly basis.
 • Facilitates the work of the Departmental STEMI champions workgroup.
 • Facilitates in conjunction with the Service Line Director, AMI/STEMI Medical Director through the preparation of agendas and minutes.
 • Implements recommendations from the AMI/STEMI committee.
 • Monitors effectiveness of all STEMI program objectives.

DIMENSIONS
Skills assessment:
• Basic computer skills in Word documents preparation and Excel spreadsheet Database Reports: Collecting, entering to the database and methods to validate data, and designing the database to facilitate performance improvement activities, trend reports, education and research while protecting patient confidentiality.
• Case by case follow-up review to all nursing staff, physicians, and EMS care providers within 24-48 hours of patient admission.
• Overall monthly statistical reporting of all parameters associated with STEMI care.
• Quality performance reports including admit to task parameters, Door to balloon time, and CCL on-call team response time, etc.

ADDITIONAL REMARKS
Follow-up case management is included in the job description and it should be emphasized that all successful national STEMI programs support an immediate case by case follow-up to clinicians. This case follow-up is basically an information sharing tool providing outcomes such as First Medical Contact to Balloon time as well as an opportunity to educate. The follow-up requires research and includes information such as angiogram, EKG’s, patient history, and patient outcomes that are shared with all staff participating in the patient’s care.
American College of Cardiology (ACC) - The American College of Cardiology (ACC), based in Washington, D.C., is a nonprofit medical association established in 1949.

Acute Coronary Syndrome (ACS) - is a syndrome (set of signs and symptoms) due to decreased blood flow in the coronary arteries such that part of the heart muscle is unable to function properly or dies.

American Heart Association (AHA) - The American Heart Association (AHA) is a non-profit organization in the United States that fosters appropriate cardiac care in an effort to reduce disability and deaths caused by cardiovascular disease and stroke.

Automatic External Defibrillator (AED) – a device that can be used by anyone with a minimal amount of training to shock (or defibrillate) a patient whose heart has stopped.

Cardiac Catheterization Lab (CCL) – an examination room in a hospital or clinic with diagnostic imaging equipment used to visualize the arteries of the heart and the chambers of the heart and treat any stenosis or abnormality found.

Cardiogenic shock – inadequate organ perfusion due to low heart output. This condition is frequently a precursor to death and can be recognized by the presence of hypotension (systolic blood pressure of 90 mmHg or less) in the setting of a myocardial infarction.

Contraindication – a specific situation in which a drug or procedure should NOT be used, because it may be more harmful than beneficial to the patient.

Coronary arteries – arteries that originate in the aorta immediately above the heart that supplies oxygenated blood to the muscular tissue of the heart.

Diastolic Blood Pressure (DBP) - The diastolic pressure is specifically the minimum arterial pressure during relaxation and dilatation of the ventricles of the heart when the ventricles fill with blood. In a blood pressure reading, the diastolic pressure is typically the second number recorded.
Diversion plan – an emergency medical service protocol to divert patients with ST-elevation myocardial infarction from the closest non-PCI hospital to a PCI capable hospital. Diversion protocols are particularly useful when patients have a contraindication to fibrinolysis, or First Medical Contact to Balloon deployment at the PCI hospital can be achieved within 90 minutes on a consistent basis.

Door to Balloon (D2B) – the time elapsed from hospital arrival or registration arrival to balloon time.

Door to Door to Balloon (D2D2B) – the time elapsed from first hospital arrival or registration arrival to arrival to PCI hospital to balloon time.

Door to Needle (D2N) – the time elapsed from hospital arrival or emergency department registration arrival to the initial infusion of fibrinolytic medication. **Electrocardiogram (ECG)** – a recorded tracing of the electrical activity of the heart.

Door In Door Out (DIDO) – the time elapsed from hospital arrival or registration arrival to emergency department departure.

Emergency Department (ED) - a medical treatment facility specializing in acute care of patients who present without prior appointment, either by their own means or by ambulance.

Emergency Medical Service (EMS) – a system of healthcare professionals, facilities, and equipment providing pre-hospital emergency care.

Emergency Medical Technician (EMT) – an emergency responder trained to provide pre-hospital emergency medical services (EMS) to the critically ill and injured.

Emergency Medical Treatment and Active Labor Act (EMTALA) – a statute that governs when and how a patient may be (1) refused treatment or (2) transferred from one hospital to another when in unstable condition. The EMTALA was passed as part of the Comprehensive Omnibus Budget Reconciliation Act of 1986, and is sometimes referred to as "the COBRA law."

Fibrinolysis – the breakdown of fibrin, usually by the enzymatic action of plasmin. Fibrin is a protein necessary for blood clotting that forms a web-like mesh that traps red blood cells and platelets and holds clots together. In the case of myocardial infarction, the administration of drugs that facilitate fibrin breakdown is referred to as “fibrinolysis.”
First Medical Contact to Balloon (FMC2B) – the time elapsed from the first medical contact (i.e. eye to eye contact of STEMI patient) to the first device deployment in the coronary artery.

Hypertension (HTN) - abnormally high blood pressure.

Intensive Care Unit (ICU) - the department of a hospital that is designed and equipped for the monitoring, care and treatment of seriously ill or injured patients.

Myocardial infarction (MI) – sudden onset of myocardial necrosis due to the formation of a blood clot in the coronary arterial system obstructing arterial blood flow to the area of cardiac muscle supplied by that artery. This condition is often manifested by symptoms of coronary insufficiency and electrocardiographic changes of ST-segment elevation (commonly known as a heart attack).

Nitroglycerin (NTG) - vasodilator to treat angina pectoris.

Percutaneous Coronary Intervention (PCI) – a procedure used to open or widen narrowed or blocked blood vessels supplying the heart. The blood vessels are accessed through the skin over the leg (femoral) or arm (radial or brachial) arteries. A thin catheter is advanced over a soft-tipped guide-wire through the arterial tree to the base of the heart where the coronary arteries arise. A smaller guide-wire is then advanced into the coronary artery and across the blockage, followed by balloon-dilation catheters, stents, and other artery opening devices as needed.

Primary Percutaneous Coronary Intervention (PTCA) – the use of percutaneous coronary intervention to open an occluded coronary artery in the setting of an ST-elevation myocardial infarction.

Privately Operated Vehicle (POV) - refers to patients who transport themselves to the hospital, or who are transported to the hospital by a family member or friend. AKA: Privately Operated Vehicle, POV.

Reperfusion – the restoration of blood flow to an organ or tissue that has had its blood supply cut off, as after a myocardial infarction.

Rescue PCI - in the event that fibrinolysis fails to open the occluded coronary artery; the artery is opened by percutaneous coronary intervention. Approximately 25% of coronary arteries fail to open with fibrinolysis. Patients whose arteries fail to open typically have persistent chest pain and ST-segment elevation more than 60 minutes after fibrinolysis is administered.
ST-Elevation myocardial infarction (STEMI) – a myocardial infarction for which the ECG shows ST-segment elevation, usually associated with a recently closed coronary artery. Patients suffering from this type of myocardial infarction are more likely to survive if their coronary artery is opened within 12 hours of onset.

Systolic Blood Pressure (SBP) - The blood pressure when the heart is contracting. It is specifically the maximum arterial pressure during contraction of the left ventricle of the heart. The time at which ventricular contraction occurs is called systole.

